Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nat Clim Chang ; 13(11): 1242-1249, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927330

RESUMO

Seafood is an important source of bioavailable micronutrients supporting human health, yet it is unclear how micronutrient production has changed in the past or how climate change will influence its availability. Here combining reconstructed fisheries databases and predictive models, we assess nutrient availability from fisheries and mariculture in the past and project their futures under climate change. Since the 1990s, availabilities of iron, calcium and omega-3 from seafood for direct human consumption have increased but stagnated for protein. Under climate change, nutrient availability is projected to decrease disproportionately in tropical low-income countries that are already highly dependent on seafood-derived nutrients. At 4 oC of warming, nutrient availability is projected to decline by ~30% by 2100 in low income countries, while at 1.5-2.0 oC warming, decreases are projected to be ~10%. We demonstrate the importance of effective mitigation to support nutritional security of vulnerable nations and global health equity.

2.
J Therm Biol ; 117: 103682, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37634393

RESUMO

Water temperature plays a crucial role in the physiology of aquatic species, particularly in their survival and development. Thus, resource programs are commonly used to manage water quality conditions for endemic species. In a river system like the Nechako River system, central British Columbia, a water management program was established in the 1980s to alter water release in the summer months to prevent water temperatures from exceeding a 20 °C threshold downstream during the spawning season of Sockeye salmon (Oncorhynchus nerka). Such a management regime could have consequences for other resident species like the white sturgeon (Acipenser transmontanus). Here, we use a hydrothermal model and white sturgeon life stage-specific experimental thermal tolerance data to evaluate water releases and potential hydrothermal impacts based on the Nechako water management plan (1980-2019). Our analysis focused mainly on the warmest five-month period of the year (May to September), which includes the water release management period (July-August). Our results show that the thermal exposure risk, an index that measures temperature impact on species physiology of Nechako white sturgeon across all early life stages (embryo, yolk-sac larvae, larvae, and juvenile) has increased substantially, especially in the 2010s relative to the management program implementations' first decade (the 1980s). The embryonic life stage was the most impacted, with a continuous increase in potential adverse thermal exposure in all months examined in the study. We also recorded major impacts of increased thermal exposure on the critical habitats necessary for Nechako white sturgeon recovery. Our study highlights the importance of a holistic management program with consideration for all species of the Nechako River system and the merit of possibly reviewing the current management plan, particularly with the current concerns about climate change impacts on the Nechako River.

3.
Glob Chang Biol ; 28(21): 6254-6267, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36047439

RESUMO

Rebuilding overexploited marine populations is an important step to achieve the United Nations' Sustainable Development Goal 14-Life Below Water. Mitigating major human pressures is required to achieve rebuilding goals. Climate change is one such key pressure, impacting fish and invertebrate populations by changing their biomass and biogeography. Here, combining projection from a dynamic bioclimate envelope model with published estimates of status of exploited populations from a catch-based analysis, we analyze the effects of different global warming and fishing levels on biomass rebuilding for the exploited species in 226 marine ecoregions of the world. Fifty three percent (121) of the marine ecoregions have significant (at 5% level) relationship between biomass and global warming level. Without climate change and under a target fishing mortality rate relative to the level required for maximum sustainable yield of 0.75, we project biomass rebuilding of 1.7-2.7 times (interquartile range) of current (average 2014-2018) levels across marine ecoregions. When global warming level is at 1.5 and 2.6°C, respectively, such biomass rebuilding drops to 1.4-2.0 and 1.1-1.5 times of current levels, with 10% and 25% of the ecoregions showing no biomass rebuilding, respectively. Marine ecoregions where biomass rebuilding is largely impacted by climate change are in West Africa, the Indo-Pacific, the central and south Pacific, and the Eastern Tropical Pacific. Coastal communities in these ecoregions are highly dependent on fisheries for livelihoods and nutrition security. Lowering the targeted fishing level and keeping global warming below 1.5°C are projected to enable more climate-sensitive ecoregions to rebuild biomass. However, our findings also underscore the need to resolve trade-offs between climate-resilient biomass rebuilding and the high near-term demand for seafood to support the well-being of coastal communities across the tropics.


Assuntos
Mudança Climática , Ecossistema , Animais , Biomassa , Pesqueiros , Peixes , Humanos , Água
4.
Glob Chang Biol ; 28(4): 1315-1331, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34902203

RESUMO

The sustainability of global seafood supply to meet increasing demand is facing several challenges, including increasing consumption levels due to a growing human population, fisheries resources over-exploitation and climate change. Whilst growth in seafood production from capture fisheries is limited, global mariculture production is expanding. However, climate change poses risks to the potential seafood production from mariculture. Here, we apply a global mariculture production model that accounts for changing ocean conditions, suitable marine area for farming, fishmeal and fish oil production, farmed species dietary demand, farmed fish price and global seafood demand to project mariculture production under two climate and socio-economic scenarios. We include 85 farmed marine fish and mollusc species, representing about 70% of all mariculture production in 2015. Results show positive global mariculture production changes by the mid and end of the 21st century relative to the 2000s under the SSP1-2.6 scenario with an increase of 17%±5 and 33%±6, respectively. However, under the SSP5-8.5 scenario, an increase of 8%±5 is projected, with production peaking by mid-century and declining by 16%±5 towards the end of the 21st century. More than 25% of mariculture-producing nations are projected to lose 40%-90% of their current mariculture production potential under SSP5-8.5 by mid-century. Projected impacts are mainly due to the direct ocean warming effects on farmed species and suitable marine areas, and the indirect impacts of changing availability of forage fishes supplies to produce aquafeed. Fishmeal replacement with alternative protein can lower climate impacts on a subset of finfish production. However, such adaptation measures do not apply to regions dominated by non-feed-based farming (i.e. molluscs) and regions losing substantial marine areas suitable for mariculture. Our study highlights the importance of strong mitigation efforts and the need for different climate adaptation options tailored to the diversity of mariculture systems, to support climate-resilient mariculture development.


Assuntos
Mudança Climática , Pesqueiros , Aclimatação , Animais , Dieta , Peixes , Humanos
5.
Sci Adv ; 7(40): eabh0895, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34597142

RESUMO

Extreme temperature events have occurred in all ocean basins in the past two decades with detrimental impacts on marine biodiversity, ecosystem functions, and services. However, global impacts of temperature extremes on fish stocks, fisheries, and dependent people have not been quantified. Using an integrated climate-biodiversity-fisheries-economic impact model, we project that, on average, when an annual high temperature extreme occurs in an exclusive economic zone, 77% of exploited fishes and invertebrates therein will decrease in biomass while maximum catch potential will drop by 6%, adding to the decadal-scale mean impacts under climate change. The net negative impacts of high temperature extremes on fish stocks are projected to cause losses in fisheries revenues and livelihoods in most maritime countries, creating shocks to fisheries social-ecological systems particularly in climate-vulnerable areas. Our study highlights the need for rapid adaptation responses to extreme temperatures in addition to carbon mitigation to support sustainable ocean development.

6.
Nature ; 591(7850): 396-401, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33731948

RESUMO

The future of the global ocean economy is currently envisioned as advancing towards a 'blue economy'-socially equitable, environmentally sustainable and economically viable ocean industries1,2. However, tensions exist within sustainable development approaches, arising from differing perspectives framed around natural capital or social equity. Here we show that there are stark differences in outlook on the capacity for establishing a blue economy, and on its potential outcomes, when social conditions and governance capacity-not just resource availability-are considered, and we highlight limits to establishing multiple overlapping industries. This is reflected by an analysis using a fuzzy logic model to integrate indicators from multiple disciplines and to evaluate their current capacity to contribute to establishing equitable, sustainable and viable ocean sectors consistent with a blue economy approach. We find that the key differences in the capacity of regions to achieve a blue economy are not due to available natural resources, but include factors such as national stability, corruption and infrastructure, which can be improved through targeted investments and cross-scale cooperation. Knowledge gaps can be addressed by integrating historical natural and social science information on the drivers and outcomes of resource use and management, thus identifying equitable pathways to establishing or transforming ocean sectors1,3,4. Our results suggest that policymakers must engage researchers and stakeholders to promote evidence-based, collaborative planning that ensures that sectors are chosen carefully, that local benefits are prioritized, and that the blue economy delivers on its social, environmental and economic goals.


Assuntos
Política Ambiental , Modelos Econômicos , Oceanos e Mares , Desenvolvimento Sustentável/economia , Lógica Fuzzy , Objetivos
7.
Nat Food ; 2(9): 673-682, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37117477

RESUMO

Aquatic foods from marine and freshwater systems are critical to the nutrition, health, livelihoods, economies and cultures of billions of people worldwide, but climate-related hazards may compromise their ability to provide these benefits. Here, we estimate national-level aquatic food system climate risk using an integrative food systems approach that connects climate hazards impacting marine and freshwater capture fisheries and aquaculture to their contributions to sustainable food system outcomes. We show that without mitigation, climate hazards pose high risks to nutritional, social, economic and environmental outcomes worldwide-especially for wild-capture fisheries in Africa, South and Southeast Asia, and Small Island Developing States. For countries projected to experience compound climate risks, reducing societal vulnerabilities can lower climate risk by margins similar to meeting Paris Agreement mitigation targets. System-level interventions addressing dimensions such as governance, gender equity and poverty are needed to enhance aquatic and terrestrial food system resilience and provide investments with large co-benefits towards meeting the Sustainable Development Goals.

8.
Glob Chang Biol ; 26(4): 2134-2148, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32037631

RESUMO

Previous studies have focused on changes in the geographical distribution of terrestrial biomes and species targeted by marine capture fisheries due to climate change impacts. Given mariculture's substantial contribution to global seafood production and its growing significance in recent decades, it is essential to evaluate the effects of climate change on mariculture and their socio-economic consequences. Here, we projected climate change impacts on the marine aquaculture diversity for 85 of the currently most commonly farmed fish and invertebrate species in the world's coastal and/or open ocean areas. Results of ensemble projections from three Earth system models and three species distribution models show that climate change may lead to a substantial redistribution of mariculture species richness potential, with an average of 10%-40% decline in the number of species being potentially suitable to be farmed in tropical to subtropical regions. In contrast, mariculture species richness potential is projected to increase by about 40% at higher latitudes under the 'no mitigation policy' scenario (RCP 8.5) by the mid-21st century. In Exclusive Economic Zones where mariculture is currently undertaken, we projected an average future decline of 1.3% and 5% in mariculture species richness potential under RCP 2.6 ('strong mitigation') and RCP 8.5 scenarios, respectively, by the 2050s relative to the 2000s. Our findings highlight the opportunities and challenges for climate adaptation in the mariculture sector through the redistribution of farmed species and expansion of mariculture locations. Our results can help inform adaptation planning and governance mechanisms to minimize local environmental impacts and potential conflicts with other marine and coastal sectors in the future.

9.
Biota Neotrop. (Online, Ed. ingl.) ; 20(supl.1): e20190902, 2020. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1131968

RESUMO

Abstract The Río de la Plata Grasslands (RPG) are one of the most modified biomes in the world. Changes in land use and cover affect the RPG's rich biodiversity. In particular, the expansion of crops, overgrazing, afforestation, and the introduction of exotic species pose a major threat to the conservation of biodiversity and ecosystem services (BES). In this study, we applied the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) conceptual framework as a new lens to approach biodiversity conservation enactments in the RPG. First, we systematically reviewed published scientific literature to identify direct and indirect drivers that affect the RPG's BES. Further, we conducted an extensive analysis of management policies affecting the BES directly in the region, at a national and international level. We conclude by offering recommendations for policy and praxis under the umbrella of the IPBES framework.


Resumo As pradarias do Rio da Prata são um dos biomas mais modificados no mundo. Alterações nos usos do solo afetam a rica biodiversidade deste ecossistema. A expansão da agricultura, sobrepastoreio, arborização e a introdução de espécies exóticas, principalmente, representam uma grande ameaça para a conservação da biodiversidade e dos serviços ecossistêmicos (BES). Neste estudo, aplicamos a estrutura conceptual da Plataforma Intergovernamental sobre Biodiversidade e Serviços Ecossistêmicos (IPBES) como uma nova forma de abordar as políticas de conservação da biodiversidade neste bioma. Primeiro, revisamos sistematicamente artigos científicos publicados de forma a identificar fatores diretos e indiretos que afetam os BES nas pradarias do Rio da Prata. Adicionalmente, realizamos uma extensa análise das políticas de gestão que afetam diretamente os BES na região, quer a nível nacional, quer internacional. Concluímos com propostas e recomendações de políticas e práticas sob a égide do quadro do IPBES.

10.
PLoS One ; 13(1): e0191086, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29357374

RESUMO

Aquaculture has grown rapidly over the last three decades expanding at an average annual growth rate of 5.8% (2005-2014), down from 8.8% achieved between 1980 and 2010. The sector now produces 44% of total food fish production. Increasing demand and consumption from a growing global population are driving further expansion of both inland and marine aquaculture (i.e., mariculture, including marine species farmed on land). However, the growth of mariculture is dependent on the availability of suitable farming areas for new facilities, particularly for open farming practices that rely on the natural oceanic environmental parameters such as temperature, oxygen, chlorophyll etc. In this study, we estimated the marine areas within the exclusive economic zones of all countries that were suitable for potential open ocean mariculture activities. To this end, we quantify the environmental niche and inferred the global habitat suitability index (HSI) of the 102 most farmed marine species using four species distribution models. The average weighted HSI across the four models suggests that 72,000,000 km2 of ocean are to be environmentally suitable to farm one or more species. About 92% of the predicted area (66,000,000 km2) is environmentally suitable for farming finfish, 43% (31,000,000 km2) for molluscs and 54% (39,000,000 km2) for crustaceans. These predictions do not consider technological feasibility that can limit crustaceans farming in open waters. Suitable mariculture areas along the Atlantic coast of South America and West Africa appear to be most under-utilized for farming. Our results suggest that factors other than environmental considerations such as the lack of socio-economic and technological capacity, as well as aqua feed supply are currently limiting the potential for mariculture expansion in many areas.


Assuntos
Aquicultura/métodos , Ecossistema , Biologia Marinha , Animais , Biodiversidade , Clorofila/análise , Meio Ambiente , Oxigênio/análise , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...